Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38540340

RESUMO

There is still much to learn about the epigenetic mechanisms controlling gene expression during carcinogenesis. When researching aberrant DNA methylation, active proliferative tumor cells from head and neck squamous cell cancer (HNSCC) can be used as a model. The aim of the study was to investigate the methylation status of CDKN1, CDKN2A, MYC, Smad3, SP1, and UBC genes in tumor tissue (control-normal tissue) in 50 patients (37 men and 13 women) with HPV-negative HNSCC. Methods: Bisulfite conversion methods and methyl-sensitive analysis of high-resolution melting curves were used to quantify the methylation of genes. In all patients and across various subgroups (tongue carcinoma, laryngeal and other types of carcinomas T2, T3, T4 status; age before and after 50 years; smoking and non-smoking), there are consistent differences in the methylation levels in the SP1 gene in tumor DNA compared to normal. Results: The methylation of the SP1 gene in tumor DNA suppresses its expression, hinders HNSCC cell proliferation regulation, and could be a molecular indicator of malignant cell growth. The study of DNA methylation of various genes involved in carcinogenesis is promising because hypermethylated promoters can serve as potential biomarkers of disease.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Carcinogênese/genética , Carcinoma de Células Escamosas/patologia , DNA/metabolismo , Metilação de DNA/genética , Células Epiteliais/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Infecções por Papillomavirus/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
2.
Life (Basel) ; 12(2)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35207533

RESUMO

BACKGROUND: In recent years, the interest in genetic predisposition studies for coronary artery disease and restenosis has increased. Studies show that polymorphisms of genes encoding folate cycle and homocysteine metabolism enzymes significantly contribute to atherogenesis and endothelial dysfunction. The purpose of this study was to examine some SNPs of genes coding for folate cycle enzymes and DNA methyltransferases as risk factors for in-stent restenosis. METHODS: The study included 113 patients after stent implantation and 62 patients without signs of coronary artery disease at coronary angiography as the control group. Real-time PCR and RFLP-PCR were applied to genotype all participants for MTHFR rs1801133, MTHFR rs1801131, MTR rs1805087, MTRR rs1801394, DNMT1 rs8101626, DNMT3B rs1569686, and DNMT3B rs2424913 gene polymorphisms. Statistical data processing was carried out using the R language and the SPSS Statistics 20 software. RESULTS: Statistically significant differences in the DNMT3B gene polymorphisms were found between patients with and without in-stent restenosis. An association of TT rs1569686 and TT rs2424913 genotypes with the development of restenosis was revealed. The TT rs1569686 genotype was more frequent in the patients under the age of 65 years and in the subgroup of patients with post-12-month restenosis, as was the minor GG genotype for MTR rs1805087. The homozygous TT genotype for MTHFR rs1801133 was significantly more frequent in the subgroup over 65 years old. The frequencies of the heterozygous genotype for the MTRR gene and the minor GG homozygotes for the DNMT1 gene were significantly higher in the subgroup with in-stent restenosis under 65 years old. CONCLUSIONS: The results of this study could be used for a comprehensive risk assessment of ISR development, determining the optimal tactics and an individual approach in the treatment of patients with coronary artery disease before or after percutaneous coronary interventions, including homocysteine-lowering treatment in patients with hyperhomocysteinemia and a high risk of in-stent restenosis.

3.
Biomolecules ; 11(5)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065198

RESUMO

This study investigated the renin-angiotensin-aldosterone system (RAAS) gene polymorphisms as possible genetic risk factors for the restenosis development in patients with drug-eluting stents. 113 participants had coronary artery disease and underwent stenting. The control group consisted of 62 individuals with intact coronary arteries. Patients were divided into two groups: with in-stent restenosis (ISR) and without it. The patients with ISR were classified into subgroups by the terms of the restenosis development and age. Real-time PCR and Restriction Fragment Length Polymorphism-PCR were used to genotype the study participants for RAAS gene polymorphisms. We found that the development of restenosis is generally associated with the minor A allele for renin (REN) rs2368564 and the major TT genotype for angiotensinogen (AGT) rs699. The heterozygous genotype for AGT rs4762 acts as a protective marker. A minor A allele for angiotensin II type 2 receptor (AGTR2) rs1403543 is associated with a risk of restenosis in people under 65 years old. Among patients with the early ISR, heterozygotes for angiotensin II type 1 receptor (AGTR1) rs5186 are more frequent, as well as A allele carriers for AGTR2 rs1403543. A minor homozygous genotype for REN rs41317140 and heterozygous genotype for aldosterone synthase (CYP11B2) rs1799998 are predisposed to the late restenosis. Thus, to choose the effective treatment tactics for patients with coronary artery disease, it is necessary to genotype patients for the RAAS polymorphisms, which, along with age and clinical characteristics, will allow a comprehensive assessment of the risk of the restenosis development after stenting.


Assuntos
Doença da Artéria Coronariana/genética , Reestenose Coronária/etiologia , Stents Farmacológicos/efeitos adversos , Polimorfismo de Nucleotídeo Único , Sistema Renina-Angiotensina , Idoso , Angiotensinogênio/genética , Doença da Artéria Coronariana/complicações , Reestenose Coronária/genética , Citocromo P-450 CYP11B2/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Fragmento de Restrição , Reação em Cadeia da Polimerase em Tempo Real , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/genética , Renina/genética
4.
Aging (Albany NY) ; 3(6): 584-96, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21685510

RESUMO

Genome stability of human embryonic stem cells (hESC) is an important issue because even minor genetic alterations can negatively impact cell functionality and safety. The incorrect repair of DNA double-stranded breaks (DSBs) is the ultimate cause of the formation of chromosomal aberrations. Using G2 radiosensitivity assay, we analyzed chromosomal aberrations in pluripotent stem cells and somatic cells. The chromatid exchange aberration rates in hESCs increased manifold 2 hours after irradiation as compared with their differentiated derivatives, but the frequency of radiation-induced chromatid breaks was similar. The rate of radiation-induced chromatid exchanges in hESCs and differentiated cells exhibited a quadratic dose response, revealing two-hit mechanism of exchange formation suggesting that a non-homologous end joining (NHEJ) repair may contribute to their formation. Inhibition of DNA-PK, a key NHEJ component, by NU7026 resulted in a significant decrease in radiation-induced chromatid exchanges in hESCs but not in somatic cells. In contrast, NU7026 treatment increased the frequency of radiation-induced breaks to a similar extent in pluripotent and somatic cells. Thus, DNA-PK dependent NHEJ efficiently participates in the elimination of radiation-induced chromatid breaks during the late G2 in both cell types and DNA-PK activity leads to a high level of misrejoining specifically in pluripotent cells.


Assuntos
Reparo do DNA , Fase G2/fisiologia , Células-Tronco Pluripotentes/fisiologia , Cromátides/efeitos da radiação , Aberrações Cromossômicas , Quebras de DNA de Cadeia Dupla , Proteína Quinase Ativada por DNA/metabolismo , Relação Dose-Resposta à Radiação , Humanos , Células-Tronco Pluripotentes/citologia , Radiação Ionizante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...